Quantum Cohomology of Isotropic Grassmannians

نویسندگان

  • HARRY TAMVAKIS
  • Andrew Kresch
چکیده

Let G be a classical Lie group and P a maximal parabolic subgroup. We describe a quantum Pieri rule which holds in the small quantum cohomology ring of G/P . We also give a presentation of this ring in terms of special Schubert class generators and relations. This is a survey paper which reports on joint work with Anders S. Buch and Andrew Kresch.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Pieri Rules for Isotropic Grassmannians

We study the three point genus zero Gromov-Witten invariants on the Grassmannians which parametrize non-maximal isotropic subspaces in a vector space equipped with a nondegenerate symmetric or skew-symmetric form. We establish Pieri rules for the classical cohomology and the small quantum cohomology ring of these varieties, which give a combinatorial formula for the product of any Schubert clas...

متن کامل

Quantum cohomology of Grassmannians

The (small) quantum cohomology ring of a Grassmann variety encodes the enumerative geometry of rational curves in this variety. By using degeneracy loci formulas on quot schemes, Bertram has proved quantum Pieri and Giambelli formulas which give a complete description of the quantum cohomology ring. In this talk I will present elementary new proofs of these results which rely only on the defini...

متن کامل

Quantum Cohomology of Orthogonal Grassmannians

Let V be a vector space with a nondegenerate symmetric form and OG be the orthogonal Grassmannian which parametrizes maximal isotropic subspaces in V . We give a presentation for the (small) quantum cohomology ring QH∗(OG) and show that its product structure is determined by the ring of P̃ -polynomials. A ‘quantum Schubert calculus’ is formulated, which includes quantum Pieri and Giambelli formu...

متن کامل

The quantum Euler class and the quantum cohomology of the Grassmannians

The Poincaré duality of classical cohomology and the extension of this duality to quantum cohomology endows these rings with the structure of a Frobenius algebra. Any such algebra possesses a canonical “characteristic element;” in the classical case this is the Euler class, and in the quantum case this is a deformation of the classical Euler class which we call the “quantum Euler class.” We pro...

متن کامل

Gromov-Witten invariants on Grassmannians

We prove that any three-point genus zero Gromov-Witten invariant on a type A Grassmannian is equal to a classical intersection number on a two-step flag variety. We also give symplectic and orthogonal analogues of this result; in these cases the two-step flag variety is replaced by a sub-maximal isotropic Grassmannian. Our theorems are applied, in type A, to formulate a conjectural quantum Litt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004